Link Layer Discovery Protocol (LLDP)

The IEEE 802.1ab Link Layer Discovery Protocol (LLDP) is a unidirectional protocol that uses the MAC layer to transmit specific information about the capabilities and status of the local device. The LLDP can send as well as receive information from a remote device stored in the related MIB (or MIBs).

The LLDP does not contain a mechanism to solicit information received from other LLDP agents or to confirm the receipt of information. However, LLDP provides the flexibility to enable a transmitter and receiver separately, and the following LLDP agent configurations are allowed:

The information fields in each LLDP frame are contained in an LLDP Data Unit (LLDPDU) as a sequence of variable length information elements. Each information element includes Type, Length, and Value fields (TLVs):

Each LLDPDU contains four mandatory TLVs and optional TLVs selected by the Network Management. The following is the format of an LLDPDU:

A concatenated string formed by the Chassis ID TLV and the Port ID TLV is used by a recipient to identify an LLDP port or agent. The combination of the Port ID and Chassis ID TLVs remains unchanged until the port or agent is operational.

The TTL field of a Time-To-Live TLV can be a zero or non-zero value. A zero TTL field value notifies the receiving LLDP agent to immediately discard all information related to sending LLDP agent. A non-zero TTL field value indicates the time duration for which the receiving LLDP agent should retain the information of the sending LLDP agent. The receiving LLDP agent discards all information related to the sending LLDP agent after the time interval indicated in the TTL field is complete.

Note:

A TTL zero value is used to signal that the sending LLDP port has initiated a port shutdown procedure.

The End Of LLDPDU TLV indicates the end of the LLDPDU.

The following information is included in the protocol as defined by the IEEE 802.1ab standard:

The following figure shows the LLDP internal architecture for a network node.

Figure: LLDP internal architecture for a network node

To detect and address network problems and inconsistencies in the configuration, the network operators can discover the topology information using LLDP. The standard-based tools address the complex network scenarios where multiple devices from different vendors are interconnected using Ethernet interfaces.

The following figure shows an MPLS network that uses Ethernet interfaces in the core, or as an access or handoff interface to connect to different kinds of Ethernet-enabled devices such as service gateway and routers, QinQ switches, DSLAMs, or customer equipment.

The topology information of the network in the following figure can be discovered if IEEE 802.1ab LLDP is running on each of the Ethernet interfaces in the network.

Figure: Customer use example for LLDP