LSP diagnostics: LSP ping and trace

Note:

This feature is only supported on the 7210 SAS-K 2F6C4T and 7210 SAS-K 3SFP+ 8C.

The following guidelines and restrictions apply:

The router LSP diagnostics are implementations of LSP ping and LSP trace based on RFC 4379, Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures. LSP ping provides a mechanism to detect data plane failures in MPLS LSPs. LSP ping and LSP trace are modeled after the ICMP echo request/reply used by ping and trace to detect and localize faults in IP networks.

For a specific LDP FEC, RSVP P2P LSP, or BGP IPv4 Label Router, LSP ping verifies whether the packet reaches the egress label edge router (LER), while in LSP trace mode, the packet is sent to the control plane of each transit label switched router (LSR) which performs various checks to see if it is actually a transit LSR for the path.

The downstream mapping TLV is used in lsp-ping and lsp-trace to provide a mechanism for the sender and responder nodes to exchange and validate interface and label stack information for each downstream of an LDP FEC or an RSVP LSP and at each hop in the path of the LDP FEC or RSVP LSP.

Two downstream mapping TLVs are supported. The original Downstream Mapping (DSMAP) TLV defined in RFC 4379 and the new Downstream Detailed Mapping (DDMAP) TLV defined in RFC 6424.

When the responder node has multiple equal cost next-hops for an LDP FEC prefix, the downstream mapping TLV can further be used to exercise a specific path of the ECMP set using the path-destination option. The behavior in this case is described in the following ECMP subsection.