In addition to performing the same features as the DSMAP TLV, the new DDMAP TLV addresses the following scenarios:
Full validation of an LDP FEC stitched to a BGP IPv4 label route. In this case, the LSP trace message is inserted from the LDP LSP segment or from the stitching point.
Full validation of a BGP IPv4 label route stitched to an LDP FEC. The LSP trace message is inserted from the BGP LSP segment or from the stitching point.
Full validation of an LDP FEC which is stitched to a BGP LSP and stitched back into an LDP FEC. In this case, the LSP trace message is inserted from the LDP segments or from the stitching points.
Full validation of an LDP FEC tunneled over an RSVP LSP using LSP trace.
Full validation of a BGP IPv4 label route tunneled over an RSVP LSP or an LDP FEC.
To correctly check a target FEC which is stitched to another FEC (stitching FEC) of the same or a different type, or which is tunneled over another FEC (tunneling FEC), it is necessary for the responding nodes to provide details about the FEC manipulation back to the sender node. This is achieved via the use of the new FEC stack change sub-TLV in the Downstream Detailed Mapping TLV (DDMAP) defined in RFC 6424.
When the user configures the use of the DDMAP TLV on a trace for an LSP that does not undergo stitching or tunneling operation in the network, the procedures at the sender and responder nodes are the same as in the case of the existing DSMAP TLV.
This feature however introduces changes to the target FEC stack validation procedures at the sender and responder nodes in the case of LSP stitching and LSP hierarchy. These changes pertain to the processing of the new FEC stack change sub-TLV in the new DDMAP TLV and the new return code 15
Label switched with FEC change
. The following is a description of the main changes which are a superset of the rules described in Section 4 of RFC 6424 to allow greater scope of interoperability with other vendor implementations.