RSVP-TE Overview

RSVP-TE requests resources for simplex (unidirectional) flows. Therefore, RSVP-TE treats a sender as logically distinct from a receiver, although the same application process may act as both a sender and a receiver at the same time. Duplex flows require two LSPs, to carry traffic in each direction.

RSVP-TE is a signaling protocol, not a routing protocol. RSVP-TE operates with unicast and multicast routing protocols. Routing protocols determine where packets are forwarded. RSVP-TE consults local routing tables to relay RSVP-TE messages.

RSVP-TE uses two message types to set up LSPs, PATH and RESV. Figure: Establishing LSPs depicts the process to establish an LSP.

Figure: Establishing LSPs

Figure: LSP Using RSVP-TE Path Setup displays an example of an LSP path set up using RSVP-TE. The ingress label edge router (iLER 1) transmits an RSVP-TE PATH message (path: 30.30.30.1) downstream to the egress label edge router (eLER 4). The PATH message contains a label request object that requests intermediate LSRs and the eLER to provide a label binding for this path.

Figure: LSP Using RSVP-TE Path Setup

In addition to the label request object, an RSVP-TE PATH message can also contain a number of optional objects:

Upon receiving a PATH message containing a label request object, the eLER transmits an RESV message that contains a label object. The label object contains the label binding that the downstream LSR communicates to its upstream neighbor. The RESV message is sent upstream towards the iLER, in a direction opposite to that followed by the PATH message. Each LSR that processes the RESV message carrying a label object uses the received label for outgoing traffic associated with the specific LSP. When the RESV message arrives at the ingress LSR, the LSP is established.